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Abstract-Evaporation of a liquid droplet containing small solid particles (slurry droplets) is analyzed in 
a quasi-steady approximation. The developed model takes into account effects of compressibility and 
filtration of a gas-vapor mixture within the porous shell. It is shown that in the case of small temperature 
differences Ln the neighborhood of a slurry droplet at the second stage of drying (evaporation through a 
porous shell), the regime of slow evaporation and saturation (negligibly small drying rate) occurs. In the 
case of high temperature differences in the neighborhood of a slurry droplet at the second stage of 
drying, the pressure of the gas-vapor mixture within the porous shell significantly increases leading to the 
fragmentation of a porous shell. The comparison of the proposed model with the diffusion model, which 
neglects the Stefan’s flux shows that the diffusion model incorrectly describes evaporation of a slurry 

droplet at the final stage of drying. 

1. INTRODUCTION 

Evaporation of droplets containing small solid par- 
ticles (slurry droplets) is encountered in various engin- 
eering fields, e.g. pharmaceutical industry, bioen- 
gineering, food industry [l-3]. Coal-water slurries are 
used as a liquid fuel for boilers [4, 51. Moreover aero- 
sol generation of materials has seen many new devel- 
opments in recent years. One of the new applications 
of this technology is spray pyrolysis. Spray pyrolysis 
is an aerosol process commonly used to form a wide 
variety of materials in powder form, including metals, 
metal oxides, nonoxide ceramics, superconducting 
materials, fullerenes, and nanophase materials [6]. In 
spite of the importance of slurry droplet evaporation 
for engineering applications there are few publications 
analyzing this problem. The purpose of this research 
is to develop a comprehensive model for slurry droplet 
evaporation and drying. In the literature the problem 
of evaporation of droplets containing small solid par- 
ticles is treated with the aid of the two models : 

(1) droplet wit:h crust [7-lo] ; 
(2) droplet with bubble [ll, 121. 

Both models consider the evaporation and drying 
of slurry droplets to occur in two stages (see Fig. 1). 
During the first stage, immediately after the injection 
of a slurry droplet into the ambient hot air, the droplet 
is assumed to be composed mainly of liquid and its 
evaporation rate is assumed to be controlled by the 
gas phase resistance. During evaporation the amount 
of liquid mass, ln,, decreases while the solid mass 
remains constant and droplet diameter continuously 
shrinks. At some critical solid-liquid mass ratio 
(m&m,), the discrete insoluble solid particles form an 

agglomerate (or cannot contract anymore), while the 
voids between particles are still filled with liquid. At 
this moment, which is assumed to occur at the pre- 
specified critical solid-liquid mass ratio, the second 
stage of drying begins. In ref. [7] this critical mass 
ratio for coal-water and coal-lime slurry droplets was 
calculated to be 5.35. This value was obtained from a 
minimum void fraction attained in packing of spheri- 
cal particles. Since the densities of solid particles and 
liquid may differ considerably, it is more convenient 
to employ the notion of the critical solid-liquid volume 
ratio 6 = VJV,. The first stage of drying is assumed 
to occur when 6 < 6, (where 6, is value of critical 
solid-liquid volume ratio). When 6 = 6, the second 
stage of drying begins. 

During the second stage of drying the process is 
determined by the ambient conditions (ambient tem- 
perature, pressure etc.). If the ambient temperature is 
in the range 2@2OO”C, the drying rate is not large. In 
this case, evaporating liquid flows through the porous 
spherical shell between r, and r,, where ri and r0 are 
inner and outer radii of the solid shell. Mass flux of 
the volatile species depends primarily on the per- 
meability of the formed porous crust for the passage 
of vapor and heat and on the parameters of the ambi- 
ent gas. In ref. [7] this flux was calculated from the 
following equation, which considers a Stefan-type 
diffusion : 

_ MAP, ln PT -PYI 

R*T,,, PT -pYO’ 
(1) 

In equation (l), CI is the void fraction of the dry 
crust, and the exponent b is assumed to be equal to 1, 
T,,, is the average temperature defined as TaYe = 0.5 
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NOMENCLATURE 

c, = n,/~in, dimensionless Greek symbols 
concentration CI void fraction in formula in equation 

D diffusion coefficient (1) 
d diameter 6 solid-liquid volume fraction 
h specific enthalpy 4 initial volume fraction of solid 

JT density of heat flux particles 

1, density of mass flux of molecules of ith 6, critical value of solid-liquid volume 
species fraction 

k coefficient of thermal conductivity & porosity 
K permeability p viscosity 

L latent heat of evaporation P density 

; 
mass 0 coefficient of surface tension. 
molecular mass 

M” molar mass of the volatile species 

ni concentration of ith species Subscripts 

P pressure b bubble 

:: 

integral heat flux eff effective value 
integral mass flux of vapor 

5 inner radii of the solid shell in formula ; 
ith species 
liquid 

(1) m mixture 

y0 outer radii of the solid shell in formula P particles 

(1) S solid or value at the surface 

r g radius of a gas bubble 1, 2 1 st or 2nd species (1 st species denotes 
R radius of a droplet a vapor) 
R* universal gas constant cc value at infinity. 
R g.m = R*/M gas constant of vapor-gas 

mixture 
t time Superscripts 
T temperature (i) value inside a porous shell 
U superficial (Darcian) velocity (e) value outside a droplet or a porous 
V velocity of the Stefan’s flux shell. 
V volume. 

(T,+ T,), pv, and pv,, are the partial pressures of the 
vapor at the inner and outer surfaces of the dry spheri- 
cal shell, respectively, pvi is assumed to be saturation 
pressure of vapor at the wet core temperature, T, can 
be calculated from the energy equation, and pT is the 
total pressure in the surrounding medium, M, is a 
molar mass of the volatile species and D, is a vapor- 
air diffusion coefficient. 

In derivation of equation (1) it is assumed that, 

2 

during the second stage (i.e. until porous solid core 
fragmentation), the value r, is approximately equal to 
Y,. The mass flux through the porous core is deter- 
mined by multiplying a mass flux through a single 
straight capillary channel by the void fraction of the 
dry crust. In this model it was assumed that the frag- 
mentation occurs when the partial pressure of the 
water vapor at the wet interface equals the ambient 
atmospheric pressure. This limiting value is reached 

3 

Fig. 1. Stages of drying of a slurry droplet. (1, 2) first stage of drying ; (3, 4) second stage of drying ; (5) 
stage of fragmentation. 
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within the slurry droplet since the crust temperature 
rises during the second stage of drying and the amount 
of evaporated water vapor cannot counterbalance the 
energy input [13--l 51. 

The ‘droplet with bubble’ model was used in ref. 
[l l] for the simulation of drying of a spherical droplet 
containing colloidal materials until a hollow sphere is 
formed. The model employs the Fickian transport 
equation for a hollow sphere. This equation was 
derived to describe the evaporation of moisture from 
a single, isolated spherical droplet containing colloidal 
particles. The obtained results are compared favor- 
ably with experimental data for the drying of single 
aqueous droplets containing skim milk. 

The droplet wrth bubble model was applied in ref. 
[12] to assess the drying rate of a slurry droplet. It 
was suggested to replace the known relation for the 
evaporation rate of a pure liquid droplet by the fol- 
lowing formulae : 

tir = - f p, % [s,(d$ - df ) + s0d3] (wet shell) (2) 

where .zO and a, are initial volume fraction of liquid 
and critical volume fraction, respectively, and ds,, and 
d, are outer and inner shell diameters, corre- 
spondingly. 

In the case when drying occurs in a high tem- 
perature environment the first model (‘droplet with 
crust’) assumes that the temperature of the liquid 
within the core reaches the boiling point. A large 
amount of vapor is formed during this period and the 
internal pressure in a droplet increases. Depending 
on the permeability and mechanical properties of the 
formed crust, the droplet inflates, bursts or cracks. 
The latter model was used in ref. [8] for simulation of 
high temperature drying of droplet containing col- 
loidal or dissolved nonvolatile substance. 

In the ‘droplet with bubble’ model developed in 
refs. [ 11, 121 it is assumed that, since the liquid droplet 
is surrounded by a rigid shell during the second stage 
of drying, the continuous depletion of liquid due to 
gasification causes continuous expansion of a satu- 
rated vapor bubble inside the slurry core. Eventually 
the expanding gas bubble will rupture the porous 
crust. It is postulated that the slurry will continuously 
wet the inner surface of the shell, such that the vapor 
bubble is not in direct contact with the shell. Due to 
increasing pressure within the bubble, the pressure on 
the crust increases and the crust cracks. 

Although both models (droplet with bubble and 
droplet with crust) attempt to explain the final stage 
of evaporation through porous shell (fragmentation) 
qualitatively, the nature of this phenomenon is not 
clear yet. To the best of our knowledge the model that 
allows correct description of the phenomena occurring 
during this stage has not been developed yet. More- 
over, it can be seen from the above analysis that both 

available models have a rather limited range of appli- 
cations. 

In contrast to these models, the present model is 
based on exact conservation equations obtained by 
correct mean-value operation with effective heat and 
mass transfer coefficients. Furthermore the significant 
effects of compressibility and filtration of a gas-vapor 
mixture within the porous shell, disregarded in the 
previous models, are taken into account. It is shown 
that, when these effects are taken into account, the 
pressure inside a slurry droplet at the second stage of 
drying (evaporation through a porous shell) increases 
significantly. The latter phenomenon occurs during 
slurry droplet drying in a high temperature environ- 
ment and may be a cause of a fragmentation of a 
porous shell. The developed approach also allows 
description of a wide variety of porous media forming 
a solid crust. 

2. SLURRY DROPLET EVAPORATION 

Consider a spherical droplet with radius R con- 
taining small solid particles and immersed into a stag- 
nant binary gas mixture at a temperature T,, with 
concentration of volatile species C, ,ai (C, = ni/Ci ni, ni 
is the dimensionless concentration of the ith species, 
molecules of volatile species are denoted by index 
1). Hereafter we assume the arbitrary temperature 
differences in the neighborhood of a slurry droplet. 

The volume of a slurry droplet 

V = V, + V, (3) 

where V, is the total volume of solid particles con- 
tained in the droplet and V, is the volume of liquid. 
The total volume of solid particles 

V, = SiV, (4) 

where 6, is the initial volume fraction of solid phase 
and V,, is the initial volume of a slurry droplet. As was 
mentioned above, at the first stage of evaporation the 
solid porous crust is formed when the solid-liquid 
volume ratio V,/V, is equal to critical value 6,. The 
value of the critical parameter 6, can be obtained 
from a minimum void fraction attained in packing of 
spherical particles. The porosity of spherical particles 
packing is determined as follows : 

v, 
&=I/I+Vs. 

Thus using equation (5) we can 
solid-liquid volume ratio : 

(5) 

obtain the critical 

(6) 

In the case of packing of spherical particles, the 
value of porosity is known to vary in the range 0.36 
0.44. It has been established that porosity is equal to 
0.36 for a well shaken granular medium (see pp. 19- 
20 in ref. [ 161 for an example). Therefore in the case 
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of a slurry droplet evaporation, the porosity of a 
porous shell can vary in the range 0.39-0.44. 

Thus the initial solid-liquid volume ratio in the 
slurry droplet is assumed to be VJV, < 6,. The process 
of evaporation of slurry droplets is modeled in two 
stages. Consider the first stage of drying when 

VJV, < 6,. 
As discussed above, during this stage the droplet is 

assumed to be composed mainly of water and the 
evaporation rate is controlled by the gas phase resist- 
ance. This stage of drying can be described by the 
system of mass and energy conservation equations : 

divjy’ = 0 divjp) =O (7) 

where 

P 

j$9 = C h;jy) _ k(e)VT(e) 

i,j= 1,2;i#j 

with the boundary conditions 

T@)IrER = T, (8) 

((L,-h,)jY)+j~‘)I.=R = 0 (10) 

where Cf) = n,/xin, is a dimensionless concentration 
of the ith species in the neighborhood of a droplet (i, 
j = 1,2 ; i # j and indexes 1 and 2 denote volatile and 
external gas species, correspondingly), T(‘) is tem- 
perature outside the droplet, k”’ is heat conductivity 
of the ambient medium, D is diffusion coefficient, L, 
is latent heat of evaporation, R is the radius of a 
droplet. Subscript s denotes the value at the surface, 
and superscript (e) denotes value outside the droplet. 
The radiation heat flux in the boundary condition (10) 
is not taken into account. As it was shown in ref. [19], 
the effect of radiation heat transfer is significant for 
liquid droplets with the radii 0.5 mm and larger and 
high ambient temperature. 

Conditions at infinity are 

In the case of arbitrary temperature differences in 
the neighborhood of a slurry droplet, the system of 
equations (7) with the boundary conditions (8)-(10) 
and conditions at infinity (11) yields the following 
expressions for temperature and dimensionless con- 
centration of volatile species distributions [ 191: 

Cl = Cl., + (C,, - CL-J 
T, nD 

s T< k”’ (13) 
_ d T”’ 

r, nD 

The unknown temperature at the droplet’s surface 
T, in formulas (12)-(13) can be found from the fol- 
lowing transcendental equation which is obtained by 
substitution of solutions (13) into the boundary con- 
dition (10) : 

s 

T5 /p’ 
-dT”‘+L m,(C,s-C,,7) 

r, nD 
Y I = 0 (14) 

where C,,$(T,) is determined by the Clapeyron-Clau- 
sius equation : 

In the last expressions M, is molecular mass of 
volatile species, C,( To) is density of saturated vapor at 
temperature To, and R * is the universal gas constant. 

The integral heat and mass fluxes can be found as 
follows : 

Q, = 
i 

m, D”‘nVCi” dS Qr = k’“‘VT’“’ dS. 
s P s 

(15) 

Then using solutions (12)-(13), the following 
expressions for heat and mass fluxes are obtained : 

Qr = 4zR 
s 

=’ k”’ dT’“’ 
r, 

s Ts 
k”’ d T’“’ 

QI = 4nRml (CdT,) -C,.,) 
TX 

s T, ,I@ (16) 
-dT”’ 

T, nD”’ 

Finally the radius of an evaporating droplet can be 
found from the following differential equation : 

dmf 
-= 
dt -Q, 

where m:is the mass of liquid and t is the time. 
Once the solid-liquid mass ratio in the slurry drop- 

let reaches the critical value, the second stage of drying 
begins. As is seen from Fig. 2, during this stage the 
droplet can be viewed as composed of two regions: 
(a) central spherical wet porous kernel, and (b) dry 
porous shell surrounding this kernel. Thus the boun- 
dary value problem must be formulated in three 
domains : wet porous kernel, porous shell and ambient 
vapor-gas mixture. 

Assume that the wet kernel is fully saturated with 
liquid and saturation is equal to zero within the porous 
shell. Since the effective coefficient of heat con- 
ductivity within the wet kernel is much greater than 
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Fig. 2. Model of evaporating of a slurry droplet. (1) Wet 
kernel ; (2) porous shell ; (3) ambient gas-vapor mixture. 

the coefficient of heat conductivity within the porous 
shell, we can assume that the temperature at the liquid 
interface is equal to the temperature within the liquid 
kernel. Thus under the above assumptions the system 
of mass and energy conservation equations inside and 
outside the porous crust reads : 

div (&“‘) = 0 (18) 

div jy’ = 0 (19) 

&v j$’ = 0 (20) 

Ev(i) = K 

- cl vpcO 
(21) 

div (p”‘v(“) = 0 (22) 

divjf’ = 0 (23) 

div j?’ = 0 (24) 

where 

(25) 

jy) = pje)vCe) -D(e) 
(rp + rzpniwzj 

(e’ 
VCj”’ (27) 

P 

where 

av(,’ = ” = PPU1 +#u* 
P 

is a superficial (Darcian) velocity (averaged over 
entire pore volume), pi is the density of ith species 
(i,j = 1, 2 ; i # j and indexes 1 and 2 denote volatile 
and external gas species, correspondingly), hi is the 
enthalpy of ith species, superscripts (e) and (i) denote 
the value within and outside the porous shell, p is 
viscosity coefficient, and K is a permeability 
coefficient. The permeability of a porous shell can be 

found from the Carman-Kozeni equation which is 
proved to be accurate for randomly packed spherical 
particles [16] and is reasonably accurate for various 
types of porous media : 

K= 
d’c’ 

180(1-e)* 

where d is an average hydraulic diameter of particles. 
The boundary conditions for the system of equa- 

tions (18)-(28) are 

T(e’IrZR, = T’“I =R = T II s (29) 

CPlr=R, = cc’I,=.s = c,,, (30) 

p@‘l,=R =P(“l,=,Q =p I m (31) 

( (i) ( i )  D’” ac, p, 0, _LEci, Gp' = 
& ar >I ( py’v!“’ _p ~ 

I = R, ar )I I = R, 

(32) 

)I ( a T'"' = &h, jr; -&(e) __ 
r = R, ar , = R, 

(33) 

jg’Ir=R,+(L,-hl)j(l’l,=R, = 0 (34) 

T”’ 1, = RI = T, (35) 

Cv’]r=R, = C$(T,) (36) 

PLR, =PI. (37) 

In the boundary conditions (29)-(37) R, is the 
radius of the porous shell, R, is the radius of the 
boundary of liquid interface and T, is the temperature 
at the boundary of liquid interface and Cfj (T,) can be 
found from Kelvin’s equation : 

Cyj(T) = C\“(Z’)exp 
2a,,, cos 9 v, 

- 
R*P,T 

where Cf.{(T), C(,“‘( T) are concentrations under dis- 
torted and flat surfaces, respectively, or,* is surface 
tension at the liquid-gas boundary, pk is radius of a 
capillary pore and 9 is the contact angle. The radius 
of capillary pore in the case of a random packing of 
monosized spheres is determined as the value of the 
order of the sphere’s radius. The contact angle in 
Kelvin’s equation can be obtained from Young’s 
equation : 

where cr,,$, u,,, and e,,, are coefficients of surface tension 
at the solid-gas, solid-liquid and liquid-gas inter- 
faces, correspondingly. 

In expressions (2.5), (26), (32) (33) the coefficients 
D$, k$ are effective diffusion coefficient and effective 
thermal conductivity, respectively. 

Conditions at infinity are given by expression (11). 
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As can be seen from equations (19) these equations 
can be easily integrated to yield : 

where A, = (Q?/47r) and Qi’) is a constant integral 
mass flux of the ith species. Since the flux of gas species 
through liquid interface is equal to zero (i.e. 
j$’ = Qy’/4nr2 = 0) and the total dimensionless con- 
centration of binary mixture is equal to 1 (i.e. 
C$ = 1 - C$)), then from equations (18)-(20), taking 
into account spherical symmetry of the problem, we 
obtain : 

Substituting equation (38) into equation (26) and 
integrating yields : 

k:l:d,T:‘) _ Q'i'h, -Qf', 
4x? 

(41) 

Since temperature T”’ depends on coordinate r 
only, we can choose To) as an independent variable 
and then, using equations (41) and (40), equation (39) 
becomes : 

pO) Q!') II”‘D$~ dCI” - 
m, (QI”h, -Q@) T 

(1 - CY) + x 5 = 0. 

(42) 

During the first stage of a slurry droplet evap- 
oration the vapor leaves the surface of a slurry droplet 
by diffusion and convection. In contrast to the first 
stage of drying, during the second stage filtration is a 
dominating mechanism of mass transfer. In this case 
the concentration of volatile (vapor) species within 
the porous shell can be significant. Therefore the 
coefficients of heat and mass transfer depend on tem- 
perature and concentration of gas species. Then equa- 
tion (42) must be integrated, taking into account the 
following dependence of the heat and mass transfer 
coefficients : 

D# = Df’(T”‘)D”‘(C ) c k”’ = k”‘(T”‘)k”‘(C ) I> eff T c 1 

(43) 

where D$‘(T”‘) and k$‘(T”‘) are functions depending 
on temperature only and Dc’(C,) and @‘(C,) are 
functions depending on concentration only. Then 
using equation (43) and boundary conditions (29), 
(30) and (35), (36) after integrating (42) we obtain : 

PI” s Ts k$’ 
-dT”’ = m, s CL? 1 

Qj”h, _ Q$) T, #‘D$’ 
LdC, 

c,,, Cl - 1 

and kz’(C,) can be calculated as functions of T”’ 
which depends on C,. In the case of gas mixtures with 
approximately equal molecular weights the ratio 
1 = D”‘(C,)/k”‘(C,) z 1. Thus the right hand side 
ocf equation (44; can be integrated and yields : 

QY’ 
Ql”h, -Qy’ 

-----dTT”’ = m,ln 
C,,,- 1 

I I Cl.1 - 1 
(45) 

Using the linear relation with saturation we can 
define the effective diffusion coefficient Df’ as follows 
[16] : 

2E 
D$’ = D(T”‘)-(l-s). 

3--E 

As was noted above, the wet kernel is saturated 
fully with the liquid (i.e. s = 1) and saturation is equal 
to zero (i.e. s = 0) within the porous shell. In this case 
a convenient and relatively accurate correlation for 
effective thermal conductivity was suggested by Kru- 
pitczka [ 171: 

or Batchelor and O’Brien’s [ 181 correlation for the 
special case of point contact and high k,/k,: 

where k, = k,(T’“) is thermal conductivity of fluid and 
k, is thermal conductivity of the solid phase. 

As can be seen from Fig. 3, in the case when porosity 
E = 0.4, Krupiczka’s and Batchelor and O’Brien’s cor- 
relations for a shell composed of coal particles in an 
air matrix approximately coincide. 

From equation (41), using boundary condition 
(29) we obtain : 

s =s k$’ dT”’ = w (h, Q(;) _ Q$‘), (46) 
r, I s 

Substituting equation (40) into equation (21) and 
choosing T”’ as an independent variable after inte- 

1 ~0.38 

2 E=0.4 

3 E=0.476 

P 0.2’ I 
r 400 600 600 1000 1200 1400 1600 

Temperature T (K) 

Fig. 3. Comparison of the dependence effective thermal con- 
ductivity vs ambient temperature between Krupiczka’s and 

Batchelor-O’Brien’s correlations. 

(44 
where 1 = Dci)(C,)/k$)(C,) and functions D$‘(C,) c c 
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grating equation (121) with the boundary conditions 
(29), (31), (35) and (37), we find that 

pf = p; + 2 Ts Qy’ Rw 
h,@'-Q$) K s kf’ p p( T(i)) d p 

?” 

(47) 

where R,,, = R*lA4 is a gas constant of a vapor-gas 
mixture and M is a molar mass of the mixture which is 
defined as follows : A4 = M,MZ/((MZ - M,)f?, + M,), 
C, is an average concentration of the first species 
within the porous shell. In the following we assume 
the power dependence of function p( T”‘) in expression 
(47) (i.e. p(T) = ;im(T/TJ’). Integrating (20) with 
the boundary condition (34) yields : 

Q$'+(L -h )Qci) = 0. " I1 (48) 

The solution of equations (22)-(24) with boundary 
conditions (29), (.30), (32), (33) and conditions at 
infinity (11) can be found similar to the previous solu- 
tion for a wet kernel and reads : 

RS 
s 

= ji’“’ d T”’ = h, Q ‘1”’ _ (e) QT (49) 
7, 

c 
Is 

= c PdT”’ (50) 

Qp = EQy) (51) 

Q!“’ = eQ$‘. (52) 

In equation (50) was took into account that, at the 
outside of a porous shell, the concentration differences 
in the neighborhood are small. Thus the system of 
equations (45)-(52) is a closed system of algebraic 
equations for determination of unknown constants 
6, T,, C,.s,p,, Q’?, Q$)> Qle’, Qf’. 

Finally, the radius of evaporating internal liquid 
kernel can be found from the following differential 
equation : 

dR: 4.r a_ = -Qf) 
3’ p1 & 

where p, is the density of liquid and t is the time. 

3. RESULTS AND DISCUSSION 

The developed mathematical model of vaporization 
of slurry droplets in the case of arbitrary temperature 
differences in the neighborhood of a slurry droplet 
was applied to study a process of evaporation of a 
coal-water slurry droplet in a binary gas mixture. The 
results are presented for small (T, = 293 K) and large 
(T, = 450 K) temperature differences in the neigh- 
borhood of the shury droplet and various values of 
initial volume fraction of solid phase, permeability 
and concentration of a volatile species in an ambient 
gas. In contrast to the previous models, the present 
model allows description of the increase of pressure 

within the porous shell, which is the cause of its frag- 
mentation at the second stage of drying. 

As mentioned above, the first stage of drying occurs 
when the value of solid-liquid volume ratio 6 is less 
than critical parameter 6,. When 6 is equal to 6, the 
porous shell with radius of R, is formed and the second 
stage of drying begins. Using equations (4)-(6) the 
radius R, of the porous shell can be determined as 
follows : 

R, = R;- J f& 
where R, is the initial radius of slurry droplet. 

The results of numerical calculations of the depen- 
dence of liquid interface radius vs time of evaporation, 
t, for slurry droplets with initial radii 200 pm and 
various values of initial volume fraction of the par- 
ticles are shown in Fig. 4. The results were obtained 
for ambient temperature, T, = 293 K, concentration 
of volatile species, C,., = 0.015, porosity, E = 0.4, and 
permeability, K = 3.6 x lo-l4 m2. The curves are plotted 
for initial solid fraction, S = 0.4, 0.2 and 0.1 and for 
a pure liquid droplet. The calculations show that the 
increase of pressure in this case does not exceed 
0.01%. Thus in a case of small temperature differences 
in the neighborhood of a slurry droplet the frag- 
mentation of a porous shell does not occur. 

It is well known that the diffusion regime of evap- 
oration occurs in the case when relative differences of 
concentration of volatile species in the neighborhood 
of a gas-vapor interface are small. In the case of 
evaporation of a pure liquid droplet immersed into an 
ambient gas this regime occurs for a wide range of 
ambient temperatures, and distribution of con- 
centration in the neighborhood of the gas-liquid inter- 
face can be calculated using diffusion approximation 
(13). Thus at the first stage of drying when a slurry 
droplet is composed mainly of water, the diffusion 
approximation is valid. At the second stage when the 
vapor flows into the ambient gas through the porous 
shell in the external domain, the diffusion approxi- 
mation for the concentration distribution (50) is valid 

I 
0 100 200 300 400 500 

Time t(s) 

Fig. 4. Radius of gas-liquid interface vs time (solid lines- 
present model, dashed lines--diffusion model and pure liquid 

droplet). 
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-. -. - Temperature 

Point Of formation 

0 500 1000 1500 2000 2500 3000 

Time t(s) 

Fig. 5. Radius of gas-liquid interface and temperature at the 
gas-liquid interface vs time (small temperature differences in 
the neighborhood of a slurry droplet). (1) 6 = 0.4; (2) 

6 = 0.2; (3) 6 = 0.1. 
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Fig. 6. Radius of gas-liquid interface and ratio p,/p,, vs time 
(high temperature differences in the neighborhood of a slurry 

droplet). (1) 6 = 0.4; (2) 6 = 0.2 ; (3) 6 = 0.1. 

too, but inside the porous shell this approximation can 
be used only in some limited cases. The comparison 
of obtained results with the diffusion approximation 
(dashed lines in Fig. 4) shows that the diffusion regime 
occurs in the case of very small values of solid fraction. 

The results of numerical calculations on the depen- 
dence of liquid interface radius and dependence of 
temperature vs time of evaporation, t, for slurry drop- 
lets with initial radii 200 pm and various values of 
initial volume fraction of the particles are shown in 
Fig. 5. The results were obtained for ambient tem- 
perature, T, = 293 K, concentration of volatile species, 
C - 0.015, porosity, E = 0.4, and permeability, 1.m - 
K = 3.6 x lo-l4 m2. The curves 1-3 are plotted for the 
solid fraction 6 = 0.1,0.2 and 0.4 correspondingly. As 
can be seen from these plots, in the case of evaporation 
of a slurry droplet with a large value of solid fraction 
at the final stage of drying, the porous shell is satu- 
rated with vapor. As a result of this effect the rate of 
evaporation of a slurry droplet with large solid frac- 
tion significantly decreases at the final stage of evap- 
oration. 

The results of calculation of the dependence of the 
radius of a gas-liquid interface and p,/po (where p. is 
normal atmospheric pressure p. = 101 325 Pa) on 
time are shown in Fig. 6. As is seen from these plots, 
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Fig. 7. Radius of a gas-liquid interface and temperature at 
the gas-liquid interface vs time (high temperature differences 
in the neighborhood of a slurry droplet). (1) 6 = 0.4; (2) 

6 = 0.2; (3) 6 = 0.1. 

during the second stage of drying the pressure at the 
gas-liquid interface increases significantly and it is 
more than likely that this is a cause of the frag- 
mentation of a porous shell. 

The boiling inside a wet kernel is supposed by some 
authors (see ref. [8] for example) to cause frag- 
mentation of a porous shell. As can be seen from Fig. 
7, the temperature at the gas-liquid interface is indeed 
above boiling point. However, simultaneously with 
the increase of temperature, the pressure within the 
porous shell also increases. As can be seen from Figs. 
6 and 7, the temperature at the gas-liquid interface 
T, = 110°C corresponds to pressure 154 014 Pa. It is 
well known that boiling occurs when a radius of a 
bubble within the liquid is greater then a critical 
radius. The growth of a vapor bubble in a liquid is 
controlled by three factors: the differences between 
liquid temperature and temperature at the bubble’s 
surface (r, > Tb,J, the surface tension, and the vapor 
pressure. The bubble surface temperature T, can be 
found from Clapeyron-Clausius equation : 

where p(T,.J = pb (jb is the pressure within the bubble) 
can be determined as follows 

~(Tb,s) = Pb = PI + $. 

In the last expression p, is the pressure of liquid and 0 
is the surface tension. If we assume that the radius of 
a bubble is equal to an average radius of a pore (cc 1 
pm) and it is immersed into a domain saturated only 
by liquid (liquid kernel) with surface tension 
coefficient e = 0.58 N m-l, then pb is equal to 
269 524.5 Pa. Thus, using the Clapeyron-Clausius 
equation we obtain the condition of bubble growth as 
Tb,s > 128.8”C. The above calculations show that the 
temperature at the gas-liquid interface is less then the 
boiling temperature at a given pressure (T < TJ and 
boiling inside a wet kernel does not occur. 
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Notably large femperature gradients inside a slurry 
droplet (VTcc 3.5 x lo5 K/m) result in a large thermal 
stress inside the porous shell. The fragmentation of 
the porous shell is caused most likely by the combined 
effects of these high thermal stresses and high internal 
pressure. 

Variation of ((i/do)* vs time of evaporation, t, for 
slurry droplets with initial diameter 400 pm and various 
values of initial volume fraction of the particles is 
shown in Fig. 7. The results were obtained for ambient 
temperature, T, = 450 K, concentration of volatile 
species, C,,, =: 0.01, porosity, E = 0.4, and 
permeability, K == 3.6 x lo-l4 m*. The curves l-3 are 
plotted for the solid fraction 6 = 0.1, 0.2 and 0.4, 
correspondingly. As is seen from these plots, at the 
second stage of drying the d*-law, which is perfectly 
true for evaporation of pure liquid droplets, is not 
valid anymore. 

4. CONCLUSIONS 

The ‘wet kernel’ model for slurry droplet drying is 
suggested. Evaporation of a liquid-solid slurry drop- 
let in the case of arbitrary temperature differences in 
the neighborhood of the droplet is analyzed in a quasi- 
steady approximation. Notably compressibility and 
filtration of a gas-vapor mixture within the porous 
shell have significant effects upon the slurry droplet 
evaporation. In contrast to the existing models (drop- 
let with crust and droplet with bubble), it is shown 
that, in the case of large temperature differences dur- 
ing the second stage of drying (evaporation through 
a porous shell), the pressure of gas-vapor mixture 
within a porou,j shell increases significantly and 
depends on the ambient temperature, initial solid frac- 
tion, porosity and permeability. It is suggested that 
increase of pressure gradient during the second stage 
of drying is the {cause of fragmentation of a porous 
shell. It is shown that, in the case of considered tem- 
perature differences in the neighborhood of a slurry 
droplet, boiling inside the porous shell does not occur. 
The process of boiling inside the porous shell at the 
second stage of (drying is a considerably more com- 
plicated phenomenon and is the subject of an ongoing 
investigation. 
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